A Two-Dimensional Fault Diagnosis Model of Induction Motors using a Gabor Filter on Segmented Images

نویسندگان

  • Jia Uddin
  • Md. Rashedul Islam
  • Jong-Myon Kim
  • Cheol-Hong Kim
چکیده

Image segmentation has received extensive attention due to the use of high-level descriptions of image content. This paper proposes a fault diagnosis model using a Gabor filter on segmented two-dimensional (2D) gray-level images. The proposed approach first converts time domain AE signals into 2D gray-level images to exploit texture information from the converted images. 2D discrete wavelet transform (DWT) is then applied to select appropriate (vertical) texture information and reconstructed it into an image. The reconstructed image is segmented into a number of sub-images depending on the segment size and a Gabor filter is applied on each sub-image. Finally, feature vectors are extracted from the Gabor-filtered sub-images and utilized as inputs in a one-against-all multiclass support vector (OAA-MCSVM) to identify each fault in an induction motor. In this study, multiple bearing defects under various segment sizes are utilized to validate the effectiveness of the proposed method. Experimental results indicate that the proposed model outperforms conventional Gabor-filter-based 2D fault diagnosis algorithms in classification accuracy, exhibiting a 97 % average classification accuracy for 64×64 segmented images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II

The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...

متن کامل

Neural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors

This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in ord...

متن کامل

A Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors – Part I

Abstract - Use of efficient signal processing tools (SPTs) to extract proper indices for fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The Part1 of the two parts paper focuses on Fourier-based techniques including fast Fourier transform and short time Fourier transform. In this paper, all utilized SPTs which have been employed for fault fete...

متن کامل

Exact Modeling and Simulation of Saturated Induction Motors with Broken Rotor Bars Fault using Winding Function Approach

Winding function method (WFM) provides a detailed and rather simple analytical modeling and simulation technique for analyzing performance of faulty squirrel-cage induction motors (SCIMs). Such analysis is mainly applicable for designing on-line fault diagnosis techniques. In this paper, WFM is extended to include variable degree of magnetic saturation by applying an appropriate air gap functio...

متن کامل

Magnetic Saturation Impacts on Fault Analysis of Squirrel-Cage Induction Motors using Winding Function Approach

Multiple coupled circuit modeling of squirrel-cage induction motors, or winding function approach is the most detailed and complete analytical model used to analyze the performance of the faulty induction motors. This paper extends the above-mentioned model to a saturable model including variable degrees of the saturation effects using an appropriate air gap function and novel techniques for lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016